Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Syst Biol Appl ; 7(1): 7, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504769

RESUMO

The ToxCast in vitro screening program has provided concentration-response bioactivity data across more than a thousand assay endpoints for thousands of chemicals found in our environment and commerce. However, most ToxCast screening assays have evaluated individual biological targets in cancer cell lines lacking integrated physiological functionality (such as receptor signaling, metabolism). We evaluated differentiated HepaRGTM cells, a human liver-derived cell model understood to effectively model physiologically relevant hepatic signaling. Expression of 93 gene transcripts was measured by quantitative polymerase chain reaction using Fluidigm 96.96 dynamic arrays in response to 1060 chemicals tested in eight-point concentration-response. A Bayesian framework quantitatively modeled chemical-induced changes in gene expression via six transcription factors including: aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, farnesoid X receptor, androgen receptor, and peroxisome proliferator-activated receptor alpha. For these chemicals the network model translates transcriptomic data into Bayesian inferences about molecular targets known to activate toxicological adverse outcome pathways. These data also provide new insights into the molecular signaling network of HepaRGTM cell cultures.


Assuntos
Hepatócitos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Toxicogenética/métodos , Teorema de Bayes , Técnicas de Cultura de Células , Linhagem Celular , Humanos , Fígado/citologia , Bibliotecas de Moléculas Pequenas , Fatores de Transcrição/efeitos dos fármacos , Transcriptoma/genética
2.
BMC Genomics ; 9: 362, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18671851

RESUMO

BACKGROUND: Previous research has demonstrated that increased milking frequency of dairy cattle during the first few weeks of lactation enhances milk yield, and that the effect persists throughout the entire lactation period. The specific mechanisms controlling this increase in milk production are unknown, but suggested pathways include increased mammary epithelial cell number, secretory capacity, and sensitivity to lactogenic hormones. We used serial analysis of gene expression (SAGE) and microarray analysis to identify changes in gene expression in the bovine mammary gland in response to 4x daily milking beginning at d 4 of lactation (IMF4) relative to glands milked 2x daily (Control) to gain insight into physiological changes occurring within the gland during more frequent milking. RESULTS: Results indicated changes in gene expression related to cell proliferation and differentiation, extracellular matrix (ECM) remodeling, metabolism, nutrient transport, and immune function in IMF4 versus Control cows. In addition, pathways expected to promote neovascularization within the gland appeared to be up regulated in IMF4 cows. To validate this finding, immunolocalization of Von Willebrandt's factor (VWF), an endothelial cell marker, and its co-localization with the nuclear proliferation antigen Ki67 were evaluated in mammary tissue sections at approximately d 7 and d 14 of lactation in cows milked 4x daily versus Controls to estimate endothelial cell abundance and proliferation within the gland. Consistent with expression of genes related to neovascularization, both abundance of VWF and its co-localization with Ki67 appeared to be elevated in cows milked 4x daily, suggesting persistent increased milk yield in response to increased milking frequency may be mediated or complemented by enhanced mammary ECM remodeling and neovascularization within the gland. CONCLUSION: Additional study is needed to determine whether changes in ECM remodeling and neovascularization of the mammary gland result in increased milk yield during increased milking frequency, or occur in response to an increased demand for milk production. Gene pathways identified by the current study will provide a basis for future investigations to identify factors mediating the effects of milking frequency on milk yield.


Assuntos
Indústria de Laticínios/métodos , Regulação da Expressão Gênica , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Animais , Apoptose/genética , Sequência de Bases , Bovinos , Diferenciação Celular/genética , Proliferação de Células , Células Epiteliais/citologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Alimentos , Perfilação da Expressão Gênica , Genoma , Imuno-Histoquímica , Lactação/genética , Lactação/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/imunologia , Neovascularização Fisiológica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...